- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Solomon, Reed (3)
-
Benham, Heidi (1)
-
Brattka, Vasco (1)
-
Brown Westrick, Linda (1)
-
Csima, Barbara F. (1)
-
DZHAFAROV, DAMIR D (1)
-
DeLapo, Andrew (1)
-
Downey, Rod (1)
-
Dzhafarov, Damir D (1)
-
Dzhafarov, Damir D. (1)
-
Dzhafarov, Damir D (1)
-
Hirschfeldt, Denis R. (1)
-
Jockusch, Jr. (1)
-
Knight, Julia F. (1)
-
Lempp, Steffen (1)
-
SOLOMON, REED (1)
-
VALENTI, MANLIO (1)
-
Villano, Java Darleen (1)
-
Yokoyama, Keita (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We study versions of the tree pigeonhole principle,$$\mathsf {TT}^1$$, in the context of Weihrauch-style computable analysis. The principle has previously been the subject of extensive research in reverse mathematics, an outstanding question of which investigation is whether$$\mathsf {TT}^1$$is$$\Pi ^1_1$$-conservative over the ordinary pigeonhole principle,$$\mathsf {RT}^1$$. Using the recently introduced notion of the first-order part of an instance-solution problem, we formulate the analog of this question for Weihrauch reducibility, and give an affirmative answer. In combination with other results, we use this to show that unlike$$\mathsf {RT}^1$$, the problem$$\mathsf {TT}^1$$is not Weihrauch requivalent to any first-order problem. Our proofs develop new combinatorial machinery for constructing and understanding solutions to instances of$$\mathsf {TT}^1$$.more » « lessFree, publicly-accessible full text available February 11, 2026
-
Benham, Heidi; DeLapo, Andrew; Dzhafarov, Damir D; Solomon, Reed; Villano, Java Darleen (, Advances in Mathematics)
-
Dzhafarov, Damir D; Solomon, Reed; Yokoyama, Keita (, Computability)We introduce the notion of the first-order part of a problem in the Weihrauch degrees. Informally, the first-order part of a problem P is the strongest problem with codomaixn ω that is Weihrauch reducible to P. We show that the first-order part is always well-defined, examine some of the basic properties of this notion, and characterize the first-order parts of several well-known problems from the literature.more » « less
-
Csima, Barbara F.; Dzhafarov, Damir D.; Hirschfeldt, Denis R.; Jockusch, Jr.; Solomon, Reed; Brown Westrick, Linda; Brattka, Vasco; Downey, Rod; Knight, Julia F.; Lempp, Steffen (, Computability)
An official website of the United States government
